Near-field ultrasonic imaging of phononic crystals

Use a small hydrophone to image the transmitted field just above the surface of the crystal (plane wave input)

Measure periodic near-field diffraction patterns (novel way of determining crystal structures?)

e.g. For a 7-layer fcc crystal (surface \perp [111]):

THEORY

Potential application: detecting and imaging subsurface defects.

(a) Detecting a subsurface line defect in a 6-layer crystal: The line defect shows up clearly above the gap...

Focusing effects above the lowest band gap:

At 1.57 MHz

... is sharply focused by the crystal (12-layer fcc tungsten carbide balls in water) An initially diverging beam (from a point source) ...

But at 1.60 MHz (only 0.03 MHz higher!)

The dispersion (or slowness) surface: a (3D) representation of the wave vector ($\propto 1/v_p$) anisotropy.

Calculate the dispersion surface from the bandstructure using the MST.

Cross sections of the dispersion surface in the first Brillouin zone:

Translate to the extended zone scheme to describe plane wave propagation

$$\vec{k} \rightarrow 2\vec{G}_{111} - \vec{k}$$

The direction normal to the dispersion surface is the wave transport direction, since

$$v_g = \nabla_k \,\omega(k)$$

Calculation of the field pattern:

Compare:

Experiment at 1.60 MHz

&

Theory at 1.63 MHz (2% shift)

Comparison of phonon-focusing in natural crystals and phononic crystals

Natural Crystals

(*Imaging Phonons*, J. P. Wolfe)

Phononic Crystals

Usually measured with thermal phonons at low temperatures in the long wavelength limit ($\lambda \gg a$), but can also be seen using ultrasound \rightarrow elastic anisotropy is described by the 4th rank elasticity tensor. Dispersion surface is dependent on angle but does not change with the frequency. => Wave propagation is frequency-independent.

Observed using ultrasound at room temperature in the strong scattering regime $(\lambda \sim a)$. Dispersion surface has both frequency and angular dependence. => Field patterns have strong frequency dependence (2% change of the frequency \rightarrow patterns are completely different). Novel sound insulators using phononic crystals [Liu *et al.*, *Science* **289** 1734 (2000)] "Magic spheres" (strong local resonances) \Rightarrow band gaps for $\lambda \sim 100 \times$ lattice constant!

Gap at 400 Hz: sphere radius = 5 mm

$$\lambda_{air} = 800 \text{ mm} \text{ at } 400 \text{ Hz}$$

Randomly packed coated spheres in epoxy lead spheres (heavy) coated with silicone rubber (soft) L = 2.1 cm $\phi = 0.48$

Conclusions: Phononic Crystals

We have used pulsed ultrasonic techniques & Multiple Scattering Theory to study how wave pulses travel through 3D phononic crystals. (Theory predicts a complete phononic band gap for fcc crystals of tungsten carbide beads immersed in water.)

Complete picture of wave propagation by measuring:

Attenuation -- amplitude transmission coefficient

Phase velocity -- band structure.

Group velocity -- dynamics of the wave fields

Tunneling of ultrasonic waves in the band gap.

- Group velocity \propto sample thickness.
- Tunneling time ~ $1 / \Delta \omega_{gap}$ (in the middle of the gap)

Good overall agreement between theory and experiment.

Focusing effects above the lowest band gap.

✤ a result of crystalline anisotropy

Possible applications

sound insulators, lenses...